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Ahatrac-The soliditication of fluids flowing along a plane wall or through a pipe is calculated with the 
assumption of a finite ambient heat transfer, and an imposed or known heat flux to the solid-liquid 
interface. 

A very good approximation is obtained if in the solid phase a parabolic temperature distribution is 
assumed which satisfies all boundary conditions and agrees with the energy equation only at the solid- 
fluid interface. A comparison with measurements on an analog electrical model and with other numerical 
results shows that the error lies below 2.5 per cent. 

In pipe flow the growth of the solid layer, for certain values of the ambient heat transfer and heat flux 
at the fluid-solid interface, may come to a stop at two critical points of which one designates stable con- 
ditions, the other an unstable state. It depends on the preceding history of the solid phase whether a stable 

or an unstable point is attained. 

NOMKNCLATUKK 

thermal diffusivity ; 

specific heat ; 

I: J dX/X”, transformed coordinate ; 

Z, coordinate in direction of flow ; 
inner surface area of pipe ; Z z/x,,, dimensionless 
outer surface area of pipe ; direction of flow. 
logarithmic mean surface area of 

pipe ; 
coefficient functions ; Greek symbols 

coordinate in 

latent heat of solidification ; 
coefficient of heat transmission ; 
parameter; n = 0 for plane wall 
problem; n = 1 for pipe flow ; 
heat flux density ; 
time ; 
initial Temperature ; 
solidification temperature ; 
ambient temperature, temperature 
of coolant 
coordinate normal to direction of 
flow ; 
characteristic length, e.g. pipe Subscripts 
radius ; L 
x/x,, dimensionless coordinate nor- s, 
ma1 to direction of flow; W, 
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coefficient of heat transfer ; 
wall thickness ; 

= [ dX/X”, transformed coordi- 
nate ; 

thermal conductivity ; 
coordinate of solidified layer ; 
= t/x,, dimensionless coordinate 
of solid layer ; 
density. 

in the flowing fluid (liquidus); 
in the solid (solidus) ; 
wall. 
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Dimensionless parameters 
k’x,/ll,, Biot number; 

hlc,(T, - T,l, phase-conversion 
parameter ; 
~x,/@Jzu;), heat flux parameter; 
a&/x& Fourier number ; 
(7” - T)/(T, - T,,), dimensionless 
temperature. 

1. INTRODUCTION 

IN NUMEROUS problems of conductive and of 
convective heat transfer there occur changes of 
phase accompanied by an absorption or a 
release of internal energy. Two of the oldest 
examples are the formation of ice and the 
solidification of lava streams. Technical exam- 
ples are the sinking of mine pits by freezing- 
techniques, separation of mixtures by freezing 
out one or more components and solidification 
of liquid metals. Some of these problems have 
been treated under the following simplifying 
assumptions [l-6]. It was assumed that the 
liquid near the liquid-solid interface is at rest 
and at the solidification temperature. The 
majority of practical problems are not met by 
these assumptions. In many technical processes 
a liquid flows along a cooled surface and begins 
to solidify on this surface. Normally the average 
temperature of the liquid will be higher than 
solidification temperature, thus causing a flow 
of heat from the liquid to the solid phase and a 
decrease in the rate of solidification. If the heat 
flux is strong enough solidification will eventu- 
ally cease or it may not even commence. 
Consider for instance the formation of ice on 
rivers and the fact that a river with rapid flow 
will take longer to freeze up than a slower one. 
The aim of the following analysis is to calculate 
speeds and duration of solidification for the 
described phenomena. The present investigation 
is limited to the flow along a plane wall and the 
flow in pipes which are technically of particular 
interest. As an essential boundary condition 
finite heat transfer between solidified layer and 
the surrounding shall be assumed. A boundary 
condition of constant wall temperature is 

satisfied by the limiting case of infinite heat 
transfer. Numerical calculations are based on 
a method of approximation originally due to 
Brovman and Surin [7] and extended by 
Megerlin [8] to problems of heat conduction 
with change of phase and which Megerlin 
showed to be superior in simplicity and accuracy 
to any approximations known as yet. 

1.1. Previous works 
The mathematical treatment of solidification 

processes by exact analytical methods proved 
to be fruitless due to high mathematical in- 
tricacy. The exact solutions due to Stefan [l] 
and Neumann [2] apply to more elementary 
problems, namely the solidification of a sta- 
tionary liquid at the melting point temperature 
bounded by a plane wall at a constant tem- 
perature. Portnov [9] treated the same problem 
by expansion in series, permitting, however, 
arbitrary boundary conditions between the 
plane wall and its environment. The leading 
expressions in the series set forth by Portnov 
were recently evaluated by Westphal [lo] 
in calculations concerning the thickness of 
arctic ice. The evaluation of only the first 
few expressions of the series is very cumbersome 
and can only be accomplished numerically. 

Numerical methods [ll-151 become very 
complex due to the nonlinear boundary con- 
dition for heat flux at the phase interface. The 
usual procedure is to estimate the thickness 
of the solid layer, then to determine the tem- 
perature distribution, which in turn provides 
a new value for the thickness of the layer. 
This is repeated until the estimated and the 
calculated value are in close enough agreement. 
As with most numerical methods one does not 
obtain results which explicitly interpret the 
influence of various parameters on solidification, 

Among the analytical approximations the 
integral methods by Goodman [l&18] and the 
variation method developed by Biot [19, 201 
in dealing with the temperature development 
in flight structures have proved successful in 
problems of heat conduction without changes 
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of state. Goodman’s integral methods is based 
on the method by von Kkm&n and Pohlhausen, 
familiar in boundary-layer theory. The energy 
equation is satisfied only on the average and 
the temperature distribution is represented by 
a second degree polynomial. The evaluation 
of the integral presents considerable difficulties, 
however, when dealing with problems of solidifi- 
cation with finite heat transfer at the wall. This 
difficulty also arises when the variational method 
is employed. According to investigations by 
Megerlin [8] the Goodman method does not 
yield very accurate results in problems of 
melting and solidification. 

Solidification in flowing liquids has been 
investigated as yet only for specific assumptions. 
Libby and Chen [21] applied Goodman’s 
integral method to investigate the sedimenta- 
tion of precipitants from a gas stream. Lapadula 
and Mtiller [22] treated the same problem by 
Biot’s variation method, and Beaubouef and 
Chapman [15] by a method of numerical 
integration. Basic assumptions in these in- 
vestigations were : solidification on a plane wall 
of uniform constant temperature and constant 
heat flux from the flowing liquid to the solid 
phase. The results of these calculations appear 
as a special case of the solutions for the plane 
wall presented in the following. 

2. MATHEMATICAL FORMULATION 

Consider the flow of a liquid through a duct 
bounded by solid walls or along a plane wall 
as shown in Fig. 1. The thickness of the wall is 
6,, its heat conductivity be 1,. The outside of 
this wall is cooled by some liquid. Let the 
temperature Tu of this coolant be lower than 
solidification temperature T, of the fluid flowing 
within the duct or along the plane wall. This 
latter temperature is assumed to be initially at 
To > T,. The heat-transfer coefficient between 
coolant and the wall is a. As shown in Fig. 1, 
the liquid will solidify and the thickness 
x0 - 5 of the solidified layer is generally a 
function of time and position along the wall. 
The rate of solidification is essentially governed 

flow of coolant 

solidified layer 

wall 

FIG. 1. Solidification of liquid on a wall. 

by the flux of heat into the solid layer and the 
heat transfer to the coolant. 

The calculation of the rate of solidification 
will be made with the following assumption: 
the solid layer is thin compared with its exten- 
sion in the direction of flow so that the flow of 
heat in this direction is negligibly small compared 
to that normal to the flow. There exists a well 
defined fluid-solid boundary, and the physical 
properties of the solid and the fluid are different 
but not a function of temperature.? The energy 
equation for the solid phase then is: 

aT 
- = a,[a27yax2 + en/x) aT/aq at (1) 

with n = 0 for the (one-dimensional) plane wall 
problem, n = 1 for the cylindrical case and 
n = 2 for the spherical case. At the solid-liquid 
interface the energy balance is 

pA(dt/at) = 4(aT/a+ + 4. (2) 

The symbols are: t for the time, ps for the 
density of the solid phase, h for its enthalpy 
of fusion, 4 for the flux density of heat trans- 
ferred from the fluid stream to the solid phase, 
1, for the coefficient of heat conductivity 
and a, for the thermal diffusivity of the solid 
phase. The coordinate c of the solid phase 
is a function of time t and the coordinate z. 

t Principally the present method is applicable also to 
cases of temperature-dependent properties [8]. 
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Equations (1) and (2) must be solved with the parameter q* are functions of the coordinates 
following boundary conditions : 5 and z and of 5* and z = z/?c,, respectively. 

T(x = 5) = T, 
(3) The determination of such a function is not 

the goal of the following analysis. Since the 
-A,@T/&),, = k’. [T(x = xg) - T,]. (4) thickness of the solid phase varies with time, 

The coefficient of heat transmission k’ between 
the flowing liquid will normally be accelerated 

solid phase and coolant is given by 
as the layer grows. Therefore, in order to 
determine q(<, z), in addition to the above 

(5) equations the Navier-Stokes equation, the 

Fi is the area of the wall bounding the solid 
continuity equation and the energy equation 

phase and F, that bounding the coolant. The 
for the flowing liquid (i.e. together a system 

mean wall area F,,, of a pipe is 
of at least five coupled partial differential 
equations, some of them nonlinear), would 

Frn = (Fa - FJlln (Fcz/FJ, 
,. 

(6) have to be solved. In the following discussion 

that of a plane duct is 
the function q(tj, z) may have any arbitrary 
form, provided it is specified. 

F, = Fi = F, (7) 

For the mathematical treatment dimensionless 
3. SOLUTION 

parameters are introduced which are defined 3.1. Stationary s”Iution 
as follows : 

If the solidification enthalpy of the fluid is 

the dimensionless temperature 9 = (T, - WCC - T,), 
the dimensionless time z = a&/x,‘, 
the dimensionless coordinates x = x/x0 ; 5* = Qx,, 
the Biot number Bi = k’xo/A, 
the phase-conversion parameter Hi = ~llMs - T,)l 
and the heat-flux parameter 4* = 4x&, . h. a,). 

Finally, by introducing the coordinate trans- large and the energy stored in the solid layer 
formations is comparatively small the change of tempera- 

X 

y= d$ 
s 

5’ 

and ?= g, 
5 

ture with time may be considered negligibly 

(8) slow. This condition is met if the phase-conver- 

1 sion parameter Ph is sufficiently large. The 

the energy equations (1) and (2) and the bound- energy equation (9) simplifies to an equation 

ary conditions (3) and (4) become : for stationary heat conduction : 

a9/az = (i/x2y a29/a y2 

ag*/az = -(iph) .(asjax),. + q* 
(9) 

(10) 
az1sL/ay2 = 0. (13) 

a(<*; 7) = 0 (1 I) Its general solution 

as(x = 1; qax = Bi[l - 9(X = 1; T)]. (12) 9 =fO +fiY (14) 

This last boundary condition becomes ,9(X = 
1; z) = 1 if the wall temperature T(x = x0 ; t) is 

will be called the stationary solution in the 

specified to be constant. This is the case when 
following. Due to boundary condition (11) 

the Biot number is very large, Bi + co. The 
at the phase interface, this solution becomes : 

flux of heat 4 and accordingly the heat-flux 9 =j-r(Y - q), (15) 
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The function jr, determined by condition (12) 
at the cooling surface is 

fi = Bi/(l - Biq). (16) 

Introducing this and the fact that 

=f1& (17) 

into the energy equation (10) renders an ordinary 
differential equation for the rate of solidification : 

= Bi/[Ph(l - Bill)] - q*t*“. (18) 

Integration renders the time or the extent of 
solidification. For the plane wall problem 
(one-dimensional, n = 0) this is 

1 s 1 + Bi(1 - <*) 
r = Bi/Ph - q* - q*Bi(l - <*) 

dt*. (19) 

5’ 

Integration is only possible if the function 
q*(l*, z) is known. 

Supposing the latter is independent of t*, 
the result is 

This relation can be simplified by suitably 
disposing of the characteristic length x0. Since 
in the case of solidification on a plane wall 
there exists no characteristic length of any 
preference one can randomly put Bi = 1, thus 
obtaining a characteristic length x,, = LJk’. 
Equation (20) then simplifies to 

r 1--t* 1 
x=q*Ph-2 (q*Ph) 

ln 1 - q*Ph(2 - <*) 

1 - q*Ph 

(21) 

where now x0 = &/k’ and q* may only vary 
with z and not with C;*. 

Equation (20) furthermore renders a simple 
expression for the case of constant wall tem- 
perature. One must deal with the limiting case of 
Bi + CO. If the characteristic length is chosen 
so that q* = 1, one finds 
z -1-t* -- 

Ph= Ph 
- &In [l - Ph(1 - l*)], (22) 

where now x0 = @,ha,)/q 

For the case of pipe flow (n = 1) integration of 
equation (18) renders 

5’ 
7 

Ph= s {*(l - Bi In l*) 

Phq*t*(l - Bi In t*) - Bi 
dt*. (23) 

1 

Here the pipe radius is the characteristic length : 
x0 = R. 

In case of constant wall temperature (Bi + 00) 
this becomes 

* 
T 

xl= 
i 

<*In 5* d5* 

Phq*<* ln t* + 1 ’ 
(24) 

By numerical integration one obtains the time 
of solidification. 

3.2. Transient solution 
The phase-conversion parameter Ph is often 

small. In such cases the energy stored in the 
solid layer may no longer be neglected with 
respect to the melting enthalpy and hence, 
in the energy equation (9) the change of tem- 
perature with time may not be considered 
neglegibly slow. An exact analytical treatment 
of the problem is no longer possible. One must 
either employ numerical procedures or search 
for analytical approximations. The latter have 
the advantage that they show, better than 
numerical methods, the influence of individual 
parameters. Therefore, such an analytical ap- 
proach shall again be persued. 

A parabolic expression in (Y - q) is chosen 
to represent the temperature distribution.? 

9 = fi(T).(Y - v) +fz(T).(Y - 1)2. (25) 

t The expression that Megerlin [8] denoted as the second 
approximation is included herein. It is obtained if Y - q 
is calculated for the one-dimensional problem, i e. by 
putting Y - tj = X - c*. 



204 K. STEPHAN 

It directly satisfies the boundary condition 
9([* ; r) = 9(~ ; r) = 0. The chosen expression 
contains the three unknown functions fr(r), 
f2(r) and q(z). To calculate these, equations (9, 
10, 12) are available. Since the above expression 
does not represent a general solution of the 
energy equation (9), the latter can only be 
satisfied at specific points (Y - q) if equations 
(10) and (12) are to be satisfied simultanuously. 
It is suggested that the energy equation be 
satisfied at the phase interface Y = q, because 
the resulting temperature distribution then is 
particularly accurate in this vicinity. This should 
be quite relevant, particularly for the deriva- 
tion of the rate of solidification, which strongly 
depends on the internal energy per unit volume 
stored near the interface and not so much on 
the energy stored in more distant volume 
elements. As a matter of fact, the Goodman 
method, where the heat-conduction equation 
is only averagely satisfied, produces less accurate 
results than if the latter is satisfied by the above 
expression merely in the vicinity of the phase 
interface. Megerlin showed by comparison with 
the Neumann example that application of the 
Goodman method causes a maximum error 
of 7.5 per cent, whereas application of the above 
parabolic expression brings a maximum of 
2.5 per cent. 

If expression (25) is substituted into energy 
equation (9) the latter is satisfied at the phase 
interface if the functions defining the coefficients 
are correlated by 

fi - - &<*“(a<*/&). (26) 

With condition (12) at the cooling surface and 
correlation (26) one onbtains 

fi = Bi/[l - Biq 

+ +$5*“(i3<*/~%)~(2 - Biv)]. (27) 

To finally describe the growth c*(z) or q(r) of 
the solid phase there remains the energy 
balance (10) at the solid-fluid interface. By 
introducing the coefficient functions fi and fi, 
which are now available, into equation (10) 

one finds for the growth of the solid layer the 
ordinary nonlinear differential equation 

- BijPh 

1 - Bitj + +5*“(@*/&)~(2 - Biq) 

+ q*c*? (28) 
Thus, for the plane wall problem (n = 0): 

at* - BilPh 

-z-= 1 - Biq +#$*/&)r1(2 - Biq) 
+ q*. (29) 

For pipe flow (n = 1): 

!$* = 
- Bi/Ph 

1 - Biq +%e*(ag*/&)tt(2 - Bitt) 

+ q*t*. (30) 

A similar expression is obtained for the sphere 
if n = 2 is substituted. The rates of solidification 
in the plane .wall problem, in the cylindrical 
and in the spherical problem thus appear 
closely related. This correlation is defined by the 
following rule : 

To calculate, from the rate of solidification 
(at*/&) in the one-dimensional problem, the 
corresponding rates in the cylinder or sphere 
problem one must replace (al*/&) by (a<*/&)<** 
and the heat flux parameter q* by q*t*” with 
n = 1 for the cylinder and n = 2 for the sphere. 
The parameter q, according to its definition, 
equation (8), is formed differently for the plane 
wall problem, the cylinder and the sphere. 

This rule is also true if a linear function in 
Y - q is assumed for the temperature distribu- 
tion. It does not hold, however, if an expression 
of third or higher degree is taken. For it follows 
from equations (27) and (28) that in cases of a 
parabolic distribution, the coefficient function 
fi depends only on the parameter q, not 
however, on n. Only if fi = (XJ/aY),, is solely 
a function of u does the above rule follow from 
the energy balance equation (10) at the phase 
interface. Then 

(as/ax),. = (as/ay)d<*n =fi(vr)f+- 
and the energy balance becomes 

(a<*iar)t*= = - & .fr(?) + q* . pm (31) 
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from which the above rule becomes directly 
apparent. If a polynomial of higher than second 
degree is used for the temperature distribution 
and is substituted in the energy equation (9), 
a comparison of the coefficients of equal powers 
of (Y - q) shows thatfi no longer is a function 
of q alone, but also of n. The simple rule above, 
concerning the relation between the rate of 
solidification in the one-dimensional problem 
and that in the cylindrical and spherical 
problem are thus only approximately rather 
then rigorously true.? 

and the heat flux 

WV 

This result can be plausibly explained. It 
represents the fact that solidification comes to a 
stop when the flux of heat transferred by 
convection at the phase interface exactly equals 
that transferred to the coolant at the wall, and 
thus no enthalpy of solidification is released. 

3.2.1. The rate of solidification and its limiting 
values. The rate of solidification when solidifica- 
tion commences (r* = l), calculated by equa- 
tions (29) and (30) for the one-dimensional 
problem and for pipe flow, is 

If the rate of solidification for the plane wall 
problem, according to equation (29), is plotted 
over the thickness of the solid layer, the result 
is a set of curves, as shown in Figs. 2 and 3, 

a<*/& = - Bi/Ph + q* (32) 

or, introducing parameters with the original 
dimensions : 

p& a</& = - k’(T, - TJ + 4. (324 

Towards the end of solidification ({* -+ 0) in 
pipe flow one has at*/& + - co. The rate of 
solidification in a pipe increases rapidly at the 
end of the solidification period because the 
volume of the cylindrical layers becomes in- 
creasingly smaller. 

7- 

6- 

s 
‘L 
12 

5- 

4- 

3- 

Solidification stops when at*/& = 0. It 
follows from equation (29) for the plane wall 
problem that then 

q* = Bi/[Ph(l - Biq)] (33) 

from which the thickness 6 = x,, - r of the 
solid layer is found to be 

I- 

q*=ool 
o- 

I I q’94 

1 -;I, , , , , , , , , j 
04 0.2 0.3 04 0.5 0.6 0.7 0.5 0.9 I.0 

E’ 

FIG. 2. Rate of soliditication of water with Ph = 5401 in 
the plane wall problem. 

t This is also true for the theorem derived by Lin [23] 
which follows as a special case from the rule above when 
q* = 0. Lin’s proof is based on the assumption that fi 
(C, in Lin’s work) always is merely a function of the para- ~ * 
meter rf. Lin corn& to this supposition because, in comparing 
the coefficients (at the top of p. 10 in his work [23]) he 
apparently overlooked the fact that the factor (X/r)*” 
depends on (Y - n) and cm powers of this parameter. 

with the parameter q* which is assumed con- 
stant in both diagrams. Figure 2 was plotted 
for water with Ph = 5401, whereas Fig. 3 
shows solidification rates for steel with Ph = 
0.271. Positive values of at*/& designate melt- 
ing of solid, negative values designate solidifica- 
tion of fluid. Both diagrams show that 
solidification comes to a stop as the solid layer 
grows thicker. 
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c* 

FIG. 3. Rate of solidification of water with Ph = 5.401 in 
the plane wall problem. 

In pipe flow solidification ceases, as equation of a<*/& represent melting of the solid, negative 
(30) shows, when values represent solidification of the fluid 

<*(l - Bi In <*) = Bi/(Phq*). (34) 5 

In order to discuss the roots of this expression V 
consider the curve P(<*) = <*(l - Bi In r*). 
The latter has a relative maximum at t* = 4- 

exp [( l/Bi) - l] and P = Bi exp [(l/Bi) - 11. 
The roots are the points of intersection of the 
curves F([*) and the straight line 7 = Bi/Phq*. 

As Fig. 4 suggests, there exist, depending on 
the magnitude of the Biot number and the 
parameter Bi/Phq* = k’(T, - 7”)/cj, either none, 
one or two roots. There is one root if Bi/Phq* 6 
1, there are two roots if Bi > 1 and 1 < 
Bi/Phq* 6 Bi exp [(l/Bi) - l] and there exists 
no root if Bi/Phq* > Bi exp [(l/Bi) - 11. 

Y=~*lI-BI ItIC7 

t3i = IO 

It is surprising that apparently under certain 
conditions solidification may come to a stop 
at two different positions. Figs. 5-7 will serve 
to explain this remarkable behaviour. 

In these the rate of solidification at*/& is 

’ 

plotted over the coordinate <*. Positive values FIG. 4. Points where solidification ceases in pipe flow. 
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;I , , , , , , , , , 
0.1 0.2 0.3 04 05 0.6 0.7 0.6 09 

E' 

FIG. 5. Rate of solidification of water with Ph = 5401 
in pipe flow. Bi = 1. 

phase, as indicated by arrows along the curves. 
Figure 5 was plotted for water with Ph = 5401, 
Figs, 6 and 7 for steel with Ph = O-271. Those 
curves for which Bi/Phq* < 1, have one root 
which evidently signifies some unstable state. 
On the left of the <*-axis intersection the arrows 
along the curve indicate that a solid layer, 
once it exists, will continue to grow. On the 
right of such an intersection the solid layer 
will melt away. If the pipe was initially free of 
solid phase no liquid will solidify because, as 
k’(T, - T&j < 1, the heat flux coming from 
the core of the flow is greater than or at least 
equal to that removed through the wall of the 

pipe. 

This is the case also if Bi > 1 and Bi/Phq* 2 
Bi exp [(l/Bi) - 11. The rate of solidification 
passes through a stage of minimum speed. 

If Bi > 1 whilst also 

the liquid in a pipe will begin to solidify. As 
Fig. 7 suggests, the solid layer will stop grow- 
ing at such a thickness which corresponds 
to the first intersection of the <*-axis closest to 
<* = 1. This position is stable (i.e. if the layer 
should slightly grow or melt due to some dis- 
turbance in heat flux, it will return to its original 
thickness when the disturbance is gone). Should, 
however, the solid layer have grown, for in- 
stance by intense initial cooling, to the inter- 
section ooint on the far left of Fig. 7, then 

If Bi < 1 whilst also Bi/Phq* 2 1 then, as 
Figs. 5 and 6 show, all liquid will solidify. 

6 

-I 

-6 

c’ 

FIG. 6. Rate of solidification of steel with Ph = 0,271 in 
pipe flow. Bi = 1. 

1 < Bi/Phq* < Bi exp [(l/Bi) - 1] 

11 
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FIG. 7. Rate of solidification of steel with Ph = 0.27 1 in pipe 
flow. Bi = 5. 

either further solidification or melting can 
occur, depending on whether the interface 
layer is caused to grow or to melt by some 
disturbance Once melting begins it will not 
stop until the stable intersection position on 
the right is reached. 

These considerations show that the behaviour 
of the solid layer depends on its preceding 
history. Thus, under equal conditions but with 
different preceding history, either solidification 
or melting can occur. Table 1 is a summary 
of these varied behaviours solidification in 
pipes can have. 

3.2.2. Solidijkation time 
The time for solidification is obtained by 

integrating the equations for the rate of solidifi- 
cation (29) and (30). 

For the one-dimensional problem (n = 0) 
and constant wall temperature (Bi + 00) it 

follows from equation (29), if the characteristic 
length x0 is chosen so that q* = 1, that 

I?. 
(1 - {*). dc* 

x0 - J{x,z + 2[1/Ph - (1 - (*)I> (35) 

Table 1. Solidt$tication offowing liquids in pipes 

Bi 

Characteristic parameters 

Bi/Phq* = k’(T, - TJ/d 
Behaviour of the liquid 

ig’ <l (a) No solidification if initially there existed 
no solid layer 

(b) Fusion if an initially existing layer was 
5’ > rT[<: from equation (34)]. 

(c) Solidification if an initially existing layer was 
t* < 5: [e: from equation @I)]. 

61 21 
>l 2 Bi exp [(l/I%) - l)] The liquid solidifies completely 

21 1 d Bi/Phq* < Bi exp [(l/B9 - l)] (a) Solidification to a thickness r: if initially 
there existed no solid layer. [{r is the root 
closest to <* = 1 in equation (34).] 

(b) All liquid solidifies if an initially existing solid 
layer was 5’ < tg. [[or is the root closest to t* = 0 
in equation (34).] 

(c) Fusion to a point 5: if an initially existing solid 
layer was e* > t;t. [rtl is the root closest to C* = 1, 
(0’ is the root closest to 5’ = 0 in equation (34).] 
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with 

X0 = 1 + $1 - t*) and x,, = p&ha&j. 

For the one-dimensional problem (n = 0) 
and finite heat transfer at the wall the characteris- 
tic length is chosen to make Bi = 1. Integration 
of equation (29) yields 

4. ATTAINED ACCURACY AND COMPARISON 
WITH RESULTS BY OTHER AUTHOR!3 

A correct estimation of errors due to the 
instationary solution with parabolic tempera- 
ture distribution in the solid phase, which was 
mainly applied here, has not succeeded as yet. 
As Megerlin [8] found by comparison with the 

r = 

(1 - <*) (3 - <*). d<* 

Xl - &X: + 2[l/Ph - 4*(2 - <*)I (1 - l*)(3 - <*>> 
(36) 

with X, = 2 - 5* + k*(l - r*) (3 - <*) and x0 = A/k’. 
For pipe flow (n = 1) and constant wall temperature (Bi + 00) one obtains from equation (30) 

i 

t*(ln 5*)2. d{* 

r = 1 x2 - J{x; + 2[1/Ph + q*<* ln (*I (In r*)“} 
(37) 

with X2 = - In <* + (&q*t*(h t*)2 and x0 = R. 
For pipe flow (n = 1) with finite heat transfer at the wall integration of equation (30) yields 

r = - 

r* In (*(2 - Bi ln t*) . d<* 

X3 - ,/{Xi + 2[Bi/Ph - q*t*(l - Bi In <*)I (- In r*) (2 - Bi In <*)} (38) 

with X3 = 1 - Bi ln <* - iq*t* In [*(2 - Bi In c*) and x,, = R. 

With the assumption of constant values of q* 
and numerical integration by the Simpson rule, 
the values listed in Table 2 were obtained for 
two numerical examples. For comparison the 
results obtained by the stationary solution are 
also listed. When the phaseconversion para- 
meter Ph is high, stationary and instationary 
solution differ only slightly, as shown by the 
example with Ph = 5401 for the freezing of 
water. They differ considerably, however, if 
the phase-conversion parameter is small, as 
one can see in the example with Ph = 0.271 
for the solidification of steel. Thus, for small 
values of the phaseconversion parameter the 
stationary solution is rather unsatisfactory. 

Figures 8 and 9 show various solidification 
curves. They show that if solidification comes 
to a stop the solid-liquid interface approaches 
this final position asymptotically. 

Table 2. Solidijcation times, numerical results fir the one- 
dimensional problem (n = 0); q* = 0.1 

1 - r* 
Ph = 0.271 

T %.taionsry 

001 0.1184 0.1187 OGO2850 om2799 
0.02 0.2396 02401 0.005824 OGO5627 
0.03 0.3637 0.3641 OGO8916 0.008484 
0.04 0.4908 0.4908 0.01212 0.011369 
0.05 0.6209 0.6204 0.01544 0.01428 
0.06 0.7542 0.7529 0.01886 0.01723 
0.07 0.8906 0.8883 0.02238 0.02020 
0.08 1.0303 1.0267 0.02600 0.02320 
0.09 1.1734 1.1683 o-02972 0.02623 
0.1 1.3199 1.3130 0.03353 0.02929 
0.2 2.9962 2.9568 0.07657 0.06145 
0.3 5.1459 5.0421 0.12779 0.0965 1 
0.4 7.9576 7.7462 0.18658 01345 
0.5 11.7637 11.3817 0.25258 0.1754 
0.6 17.2365 16.5797 0.32558 0.2192 
0.7 261057 24.9638 040543 0.2660 
0.8 46.2672 43.9395 0.49202 0.3158 

F 
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FIG. 8. Time for solidification in the plane wall problem. 
Transient solution. 

Neumann problem, the error, depending on the capacitor corresponding to its thermal re- 
magnitude of the phase-conversion parameter sistance and its heat capacity. At the solid-liquid 
Ph, will be less than 2.5 per cent. The one- interface, analogous to the enthalpy of solidifica- 
dimensional problem investigated in that work tion, a current is introduced at constant voltage. 
included the Neumann problem, Bi + co, as a Solidification of one volume element is com- 
special case. This case has the strongest curva- pleted when the product of current and time 
ture of the temperature profile. In the other has reached a certain value which is proportional 
limiting case, Bi + 0, the solidification tem- to the melting enthalpy of that volume element. 
perature exists in the entire solid phase, i.e. A circuit diagram for such an electrical model 
the temperature profile is no longer curved. is shown in Fig. 10. To simplify the problem 
One may assume, therefore, that with finite the heat flux at the phase interface was put 
values of the Biot number the parabolic approxi- 4 = 0. By making the subdivisions sufficiently 
mation will cause errors lower than 2.5 per cent. small it is quite possible, as previous investiga- 
To verify this the process of solidification was tions showed [24] and also was verified by 
simulated by an analog electrical model. The comparison with the Neumann problem, to 
solid phase is subdivided into a finite number reduce the error in the thickness of the solid 
of volume elements, each of which in the model layer to below 1 per cent. According to Fig. 11 
is represented by an electrical resistor and a the differences between measurements on the 

6- 

p5 - 

.4 - 

.3- 

.2 - 

FIG. 9. Time for solidification in pipe flow. Transient. 
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I 

r 

Rii=transfer resistance, R=resistance of one 
volume element, C=capacity of one volume 
element. 

FIG. 10. Electrical simulation of solidification processes. 

model and the parabolic approximation lie 
within the accuracy of the diagram. The error 
in the thickness of the solid layer is therefore 
certainly lower than 2.5 per cent. The one- 
dimensional problem was recently investigated 
by Beaubouef and Chapman [15] for the 
assumption of constant wall temperature 
(Bi + co) and time-independent heat flux at 
the liquid-solid interface. With the transforma- 
tion 5 = Y/(x, - <) Beaubouef and Chapman 
rearranged the coupled differential equations (1) 
and (2) and solved them numerically for certain 
values of the phase-conversion parameter by 
iteration with a modified fourth-order Runge- 
Kutta procedure. Comparison of the results by 
Beaubouef and Chapman and those by equa- 
tions (22) and (35) renders excellent agreement, 
as Fig. 12 shows. The results of the stationary 
solution by equation (22) are slightly displaced 
towards shorter times since the assumption of 
a stationary temperature distribution is only 
justified if the energy stored in the solid layer 
is negligibly small. In reality there is always 
some energy stored in the solid layer. The 

I I I I I I I I I I I I 
10-3 5 IO+ 5 lo- ’ 5 IO0 5 IO’ 5 IO* 5 IO’ 5 IO4 

FIG. 11. Comparison o~analytical results with measurements 
on the electrical model. 
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o-0 - 

FIG. 12. Comparison with results by Beaubouef and 
Chapman [15], 

solid layer, therefore, grows slower than the 
stationary solution is apt to suggest. 

5. SUMMARY 

Solidification of fluids flowing past a cooled, 
plane wall or through a pipe was analytically 
investigated. The mean temperature of the 
fluid was assumed higher than its melting 
temperature, thus causing a flux of heat into 
the solid phase. This heat flux will generally 
vary with time and location. The thermal 
resistance between the solid phase and the 
surrounding coolant was permitted to have 
any finite value, and consists of the thermal 
resistance of the wall and the thermal resistance 
between the wall and coolant. The problem 
leads to nonlinear, coupled, partial differential 
equations for which there is no exact solution. 
A first approximation was obtained by assuming 
a stationary temperature distribution in the 
solid phase, a better approximation was ob- 
tained with the assumption of a parabolic, 
transient temperature distribution. The latter 
satisfies all boundary conditions, but satisfies 
the heat-conduction equation only at the solid- 
liquid interface. 

A comparison with measurements obtained 
by electrical simulation and with numerical 
results by other authors showed that the error 
in the thickness of the solidified layer lies 
clearly below 2.5 per cent 

The process of solidification in pipe flow 
shows several pecularities. If solidification comes 
to a stop this critical point may represent a 
stable or an unstable state, depending on the 
magnitude of the parameters Bi and Bi/Phq* = 

k’(T, - Q/Q. A stable point is characterized 
by the fact that, following a small disturbance, 
for instance by a change of heat flux at the 
phase interface, the solid layer returns to its 
original thickness as soon as the disturbance 
disappears. An unstable point is characterized 
by the fact that, after the disturbance disappears, 
the solid layer will continue to grow or to melt 
according to the sign of the disturbance. 
Whether the point that is reached is stable 
or unstable depends on preceding occurances in 
the solidification process. The solid layer thus 
posesses something like a memory. These 
phenomena occur also in solidification of 
spherical shapes. 
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R&sum&-La solidification de fluides s’ecoulant le long d’une paroi plane ou a travers un tuyau est calculee 
en supposant un transport de chaleur fmi vers l’ambiance et un flux de chaleur impose ou connu vers 
l’interface solide-liquide. 

Une tres bonne approximation est obtenue si l’on suppose que la distribution de temperature dam 
la phase solide est parabolique, ce qui satisfait toutes les conditions aux limites et n’est en accord avec 
I’equation de I’energie qu’aux interfaces solid*hquide. Une comparaison avec des mesures sur un modele 
Blectrique analogique et avec d’autres r&sultats numeriques montre que l’erreur est inferieure a 2,5 %. 

Dam 1’6coulement en conduite, la croissance de la couche solide, pour certaines valeurs du transport de 
chaleur ambiant, et du flux de chaleur a l’interface fluide-solide, peut s’arreter pour deux points critiques, 
dont l’une designe des conditions stables et l’autre un ttbt instable. Selon l’histoire de la phase solide, on 

atteint un point stable ou instable. 

Zusauuuenfassuut-Die Verfestigung von Flhssigkeiten, die entlang einer ebenen Wand oder in einem 
Rohr stramen, wird unter der Armahme berechnet, dass der Wiirmeiibergang an die Umgebung endlich 
ist und ein aufgezwungener oder bekannter Warmefluss an der Kontaktflache von Fliissigkeit und Feststoff 
vorliegt. 

Eine sehr gute Niiherung erhSilt man, wenn in der festen Phase eine parabolische Temperaturverteilung 
angenommen wird, die allen Randbedingungen gentigt und mit der Energiegleichung nur an der fest- 
fliissig-KontaktfGhe tibereinstimmt. Ein Vergleich mit Messungen an einem elektrischen Analogie- 
model1 und mit anderen numerischen Ergebnissen zeigt, dass die Abweichung unter 2,5 Prozent liegt. 

Bei der Roherstromung kann das Anwachsen der festen Schicht ftir bestimmte Werte des WHrmetiber- 
gangs an die Umgebung und des Wiirmestroms an der fltissig-festen Kontaktflache an zwei kritischen 
Punkten zum Stillstand kommen, wobei der eine stabile Vertiltnisse, der andere einen instabilen Zustand 
bezeichnet. Es hangt von der Vorgescbichte der festen Phase ab, ob ein stabiler oder instabiler Punkt 

erhalten wird. 



214 K. STEPRAN 

AaaoTaqm-PaweT npOqeCCa 3aTBepAeBaHHR HcHAKOCTett, ABWKyWIIXCH BAOJIb IIJIOCKOfi 

CTeHKA HJIU TeKylqHX B Tpy6e, npe&IaraeTCR npOBOJJIlTb B .l(OtIy~eHElki HaJIWWI KOHe'IHOrO 

nepeKoca Terma B OKpyFKaIo~yIo cpegy II 3aAaHHOrO TenJIOBOrO noToKa K nOBepXHOCTSl 

paagenaTsepAoeTeno-xcxAKocTb. Xopoweenp~6miHtemenonysaeTcs~nfxnapa6onasecKoro 

paCIIpeJ.(eJIeHEiH TeMnepaTyp B TBepAOtlfla3e,9TO yAOBJIeTBOpReT BCeM rpaHWrHbIM yCJIOBElRM 

II COOTBeTCTByeT ypaBHeHIG0 3HeprHI4 TOJIbKO Ha nOBepXHOCTRX pa3AeJIa TBepROe TeJIO- 

HCHAKOCTb. CpaBHeHEle 3TOrO paCq&Ta C AaHHbIMM, IIOJIyqeHHbJMH C nOMOIIJbI0 aHaJIOrOBOfi 

WIeKTpWIeCKOi MOReJIM, I4 C ApyrHMLi W%CJIeHHbIML4 pe3yJIbTaTaMM 06HapyHtHBaeT nOrpeIII- 

HOCTb MeHbLIIyKJ 2,5%. &lH Te'IeHIlR B Tpy6e HapaCTaHMe TBepAOrO CJIOH npH OIIpeAeJIeHHbIX 

WHTeHCBBHOCTHX TeIlJlOO6MeHa C OKpyWaIOUei CpeAOfi II IUIOTHOCTM nOTOKa TeIIJIa Ha no- 

BepXHOCTIlpa3AeJIaHWAKOCTb-TBepAOe TeJIO MOHCeT npkIBOAI4Tb KOCTaHOBKe BAByXCJIy'laFIX, 

OAHH Fl3 KOTOpbIX 03Ha=IaeT CTaqHOHapHbIfh peHFAM, a ~pyrOi&HeCTa~MOHapHbIti,~TO 3aBkiCiiT 

0T Bcero npegbIAyIuer0 npoyecca. 


