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INFLUENCE OF HEAT TRANSFER ON
MELTING AND SOLIDIFICATION IN FORCED FLOW

K. STEPHAN
Institut fiir Thermodynamik, Technische Universitiit Berlin

(Received 18 July 1968)

Abstract—The solidification of fluids flowing along a plane wall or through a pipe is calculated with the
assumption of a finite ambient heat transfer, and an imposed or known heat flux to the solid-liquid
interface.

A very good approximation is obtained if in the solid phase a parabolic temperature distribution is
assumed which satisfies all boundary conditions and agrees with the energy equation only at the solid—
fluid interface. A comparison with measurements on an analog electrical model and with other numerical
results shows that the error lies below 2-5 per cent.

In pipe flow the growth of the solid layer, for certain values of the ambient heat transfer and heat flux
at the fluid-solid interface, may come to a stop at two critical points of which one designates stable con-
ditions, the other an unstable state. It depends on the preceding history of the solid phase whether a stable
or an unstable point is attained.
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NOMENCLATURE
thermal diffusivity;
specific heat ;
inner surface area of pipe;
outer surface area of pipe;
logarithmic mean surface area of
pipe;
coefficient functions;
latent heat of solidification ;
coefficient of heat transmission ;
parameter; n =0 for plane wall
problem; n = 1 for pipe flow;
heat flux density;
time;
initial Temperature;
solidification temperature;
ambient temperature, temperature
of coolant
coordinate normal to direction of
flow;
characteristic
radius; -
x/x,, dimensionless coordinate nor-
mal to direction of flow;

length, e.g. pipe

X
Y, { dX/X", transformed coordinate;
1
z, coordinate in direction of flow;
Z, z/xo, dimensionless coordinate in
direction of flow.
Greek symbols
o, coefficient of heat transfer;
O\ wall thickness;
é.
= [ dX/X", transformed coordi-
1 nate;
A, thermal conductivity;
¢, coordinate of solidified layer;
E*, = &/x,, dimensionless coordinate
of solid layer;
P, density.
Subscripts
L, in the flowing fluid (liquidus);
s, in the solid (solidus);
w, wall.
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Dimensionless parameters

Bi, k'xo/As, Biot number;

Ph, hic{T, — T), phase-conversion
parameter;

ok t Mo LY Lood fliie aanamadta s

q, gxo/\pghay), n€at iIux parameter,

T, agt/x3, Fourier number ;

3, (T, — AT, — T,), dimensionless
temperature.

1. INTRODUCTION
IN NUMEROUS problems of conductive and of
convective heat transfer there occur changes of
phase accompanied by an absorption or a
release of internal energy. Two of the oldest
examples are the formation of ice and the
solidification of lava streams. Technical exam-
ples are the sinking of mine pits by freezing-
techniques, separation of mixtures by freezing
out one or more components and solidification
of liquid metals. Some of these problems have
been treated under the following simplifying
assumptions [1-6]. It was assumed that the
liquid near the liquid-solid interface is at rest
and at the solidification temperature. The
majority of practical problems are not met by
these assumptions. In many technical processes
a liquid flows along a cooled surface and begins
to solidify on this surface. Normally the average
temperature of the liquid will be higher than
solidification temperature, thus causing a flow
of heat from the liquid to the solid phase and a
decrease in the rate of solidification. If the heat
flux is strong enough solidification will eventu-
ally cease or it may not even commence.
Consider for instance the formation of ice on
rivers and the fact that a river with rapid flow
will take longer to freeze up than a slower one.
The aim of the following analysis is to calculate
speeds and duration of solidification for the
described phenomena. The present investigation
is limited to the flow along a plane wall and the
flow in pipes which are technically of particular
interest. As an essential boundary condition
finite heat transfer between solidified layer and
the surrounding shall be assumed. A boundary
condition of constant wall temperature is

satisfied by the limiting case of infinite heat
transfer. Numerical calculations are based on
a method of approximation originally due to
Brovman and Surin [7] and extended by
Megerlin [8] to problems of heat conduction
with change of phase and which Megerlin
showed to be superior in simplicity and accuracy
to any approximations known as yet.

1.1. Previous works

The mathematical treatment of solidification
processes by exact analytical methods proved
to be fruitless due to high mathematical in-
tricacy. The exact solutions due to Stefan [1]
and Neumann [2] apply to more elementary
problems, namely the solidification of a sta-
tionary liquid at the melting point temperature
bounded by a plane wall at a constant tem-
perature. Portnov [9] treated the same problem
by expansion in series, permitting, however,
arbitrary boundary conditions between the
plane wall and its environment. The leading
expressions in the series set forth by Portnov
were recently evaluated by Westphal [10]
in calculations concerning the thickness of
arctic ice. The evaluation of only the first
few expressions of the series is very cumbersome
and can only be accomplished numerically.

Numerical methods [11-15] become very
complex due to the nonlinear boundary con-
dition for heat flux at the phase interface. The
usual procedure is to estimate the thickness
of the solid layer, then to determine the tem-
perature distribution, which in turn provides
a new value for the thickness of the layer.
This is repeated until the estimated and the
calculated value are in close enough agreement.
As with most numerical methods one does not
obtain results which explicitly interpret the
influence of various parameters on solidification.

Among the analytical approximations the
integral methods by Goodman [16-18] and the
variation method developed by Biot [19, 20]
in dealing with the temperature development
in flight structures have proved successful in
problems of heat conduction without changes
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of state. Goodman’s integral methods is based
on the method by von K4rman and Pohlhausen,
familiar in boundary-layer theory. The energy
equation is satisfied only on the average and
the temperature distribution is represented by
a second degree polynomial. The evaluation
of the integral presents considerable difficulties,
however, when dealing with problems of solidifi-
cation with finite heat transfer at the wall. This
difficulty also arises when the variational method
is employed. According to investigations by
Megerlin [8] the Goodman method does not
yield very accurate results in problems of
melting and solidification.

Solidification in flowing liquids has been
investigated as yet only for specific assumptions.
Libby and Chen [21] applied Goodman’s
integral method to investigate the sedimenta-
tion of precipitants from a gas stream. Lapadula
and Miiller [22] treated the same problem by
Biot’s variation method, and Beaubouef and
Chapman [15] by a method of numerical
integration. Basic assumptions in these in-
vestigations were : solidification on a plane wall
of uniform constant temperature and constant
heat flux from the flowing liquid to the solid
phase. The results of these calculations appear
as a special case of the solutions for the plane
wall presented in the following.

2. MATHEMATICAL FORMULATION

Consider the flow of a liquid through a duct
bounded by solid walls or along a plane wall
as shown in Fig. 1. The thickness of the wall is
d,, its heat conductivity be A,. The outside of
this wall is cooled by some liquid. Let the
temperature T, of this coolant be lower than
solidification temperature T; of the fluid flowing
within the duct or along the plane wall. This
latter temperature is assumed to be initially at
T, > T, The heat-transfer coefficient between
coolant and the wall is «. As shown in Fig. 1,
the liquid will solidify and the thickness
xo — & of the solidified layer is generally a
function of time and position along the wall.
The rate of solidification is essentially governed
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F1G. 1. Solidification of liquid on a wall.

by the flux of heat into the solid layer and the
heat transfer to the coolant.

The calculation of the rate of solidification
will be made with the following assumption:
the solid layer is thin compared with its exten-
sion in the direction of flow so that the flow of
heatin thisdirection isnegligibly small compared
to that normal to the flow. There exists a well
defined fluid-solid boundary, and the physical
properties of the solid and the fluid are different
but not a function of temperature.t The energy
equation for the solid phase then is:

oT

2= a[0*T/ox* + (n/x) 8T/ox] 1)

with n = O for the (one-dimensional) plane wall
problem, n =1 for the cylindrical case and
n = 2 for the spherical case. At the solid-liquid
interface the energy balance is

ph0E/0t) = ALOT/0x); + 4. @

The symbols are: ¢ for the time, p, for the
density of the solid phase, h for its enthalpy
of fusion, ¢ for the flux density of heat trans-
ferred from the fluid stream to the solid phase,
As for the coefficient of heat conductivity
and g, for the thermal diffusivity of the solid
phase. The coordinate ¢ of the solid phase
is a function of time ¢ and the coordinate z.

+ Principally the present method is applicable also to
cases of temperature-dependent properties [8].
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Equations (1) and (2) must be solved with the
following boundary conditions:

Tx=98=T, (3)
—A(0T/0x),, = k'.[T(x = xo) = T.]. (4

The coefficient of heat transmission k' between
solid phase and coolant is given by

k' = (0uF)(AwFm) + Fif(aF,). ©)

F,; is the area of the wall bounding the solid
phase and F, that bounding the coolant. The
mean wall area F,, of a pipe is

F, = (F, — F)/In(F,/F), (6)
that of a plane duct is
Fm = Fi = Fa~ (7)

For the mathematical treatment dimensionless
parameters are introduced which are defined
as follows:

the dimensionless temperature

the dimensionless time

the dimensionless coordinates

the Biot number

the phase-conversion parameter

and the heat-flux parameter

Finally, by introducing the coordinate trans-

formations
X o
d d
Y= ﬁYu‘X and n= %, )

1
the energy equations (1) and (2) and the bound-
ary conditions (3) and (4) become:

89/0r = (1/X*"). 829/6Y? 9
0l*/0t = —(1/Ph) . (09/0X)s + g* (10)
=0 (11)

09X = 1;1)/0X = Bi[l — (X = 1;7)]. (12

This last boundary condition becomes X =
1; 7) = 1if the wall temperature T(x = x4, t) is
specified to be constant. This is the case when
the Biot number is very large, Bi » oo. The
flux of heat ¢ and accordingly the heat-flux

parameter g* are functions of the coordinates
& and z and of &£* and z = z/x, respectively.
The determination of such a function is not
the goal of the following analysis. Since the
thickness of the solid phase varies with time,
the flowing liquid will normally be accelerated
as the layer grows. Therefore, in order to
determine ¢q(¢, z), in addition to the above
equations the Navier-Stokes equation, the
continuity equation and the energy equation
for the flowing liquid (i.e. together a system
of at least five coupled partial differential
equations, some of them nonlinear), would
have to be solved. In the following discussion
the function ¢(&,z) may have any arbitrary
form, provided it is specified.

3. SOLUTION
3.1. Stationary solution
If the solidification enthalpy of the fluid is

3 = (T, — DAT; - T,

T= ast/x(:;',
X = x/xo; E* = &/x,,
Bi = k'xy/A,

Ph = h/[c(T, - T)]
¢* = xollp,. h. a,)

large and the energy stored in the solid layer
is comparatively small the change of tempera-
ture with time may be considered negligibly
slow. This condition is met if the phase-conver-
sion parameter Ph is sufficiently large. The
energy equation (9) simplifies to an equation
for stationary heat conduction:

0%9/0Y? = 0. (13)
Its general solution
=fo +£1Y (14)

will be called the stationary solution in the
following. Due to boundary condition (11)
at the phase interface, this solution becomes:

8 =fi(Y —n) (15)
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The function f;, determined by condition (12)
at the cooling surface is

fi = Bi/(1 — Bin). (16)
Introducing this and the fact that
oXE*;T) (09 (6_Y _ (8% 1
ox  \oY), \ox/. \oy) &
1
=f E;—,. (17)

into the energy equation (10) renders an ordinary

differential equation for the rate of solidification :
oc* : :

—g (=) = Bi/[Ph(1 — Bin)] - q*¢*. (18)

Integration renders the time or the extent of

solidification. For the plane wall problem

(one-dimensional, n = 0) this is

1 + Bi(l — &%)

£ g Bi/Ph — ¢* — ¢*Bi(1 — &%)
{l

d&*.

(19)

Integration is only possible if the function
g*(&*, z) is known.
Supposing the latter is independent of &%,

the result is
1-¢ _( 1, (/PR - (q*/Bi))
q* q*Bl q*2
(1/Ph) — (¢*/Bi) — g*(1 — &%)
x ‘“[ (1/PH) — (¢*/B) ] 0

This relation can be simplified by suitably
disposing of the characteristic length x,. Since
in the case of solidification on a plane wall
there exists no characteristic length of any
preference one can randomly put Bi = 1, thus
obtaining a characteristic length x, = A/k'.
Equation (20) then simplifies to

T 1-¢ | 1 — g*Ph(2 — &%)
Ph~ q*Ph  (q*Ph)? 1 — g*Ph

T =

(1)

where now x, = A/k’ and ¢* may only vary
with z and not with &*.
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Equation (20) furthermore renders a simple
expression for the case of constant wall tem-
perature. One must deal with the limiting case of
Bi — oo. If the characteristic length is chosen
so that ¢g* = 1, one finds
T 1-=¢& 1 I N
Ph= " T pn ~ ppnll-Ph1-&Y) (22)
where now x, = (pha,)/q
For the case of pipe flow (n = 1) integration of
equation (18) renders

T &1 — Biln &%)
Ph ) Phq*e*(1 — Biln &*) — Bi
1
Here the pipe radius is the characteristic length:
xo = R
In case of constant wall temperature (Bi - o)
this becomes

i _ f* In 5*
Ph | Phg*&*In&* + 1

dé*. (23)

dé*. (24)
By numerical integration one obtains the time
of solidification.

3.2. Transient solution

The phase-conversion parameter Ph is often
small. In such cases the energy stored in the
solid layer may no longer be neglected with
respect to the melting enthalpy and hence,
in the energy equation (9) the change of tem-
perature with time may not be considered
neglegibly slow. An exact analytical treatment
of the problem is no longer possible. One must
either employ numerical procedures or search
for analytical approximations. The latter have
the advantage that they show, better than
numerical methods, the influence of individual
parameters. Therefore, such an analytical ap-
proach shall again be persued.

A parabolic expression in (Y — ) is chosen
to represent the temperature distribution.

9 =fil0). (Y —n) +fo(r) (Y — )%

t The expression that Megerlin {8] denoted as the second
approximation is included herein. It is obtained if Y — 5
is calculated for the one-dimensional problem, ie. by
putting Y — n = X — &%

(25)
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It directly satisfies the boundary condition
3(&*; 1) = Hn; 1) = 0. The chosen expression
contains the three unknown functions f(t),
f(t) and n(t). To calculate these, equations (9,
10, 12) are available. Since the above expression
does not represent a general solution of the
energy equation (9), the latter can only be
satisfied at specific points (Y — #») if equations
(10) and (12) are to be satisfied simultanuously.
It is suggested that the energy equation be
satisfied at the phase interface Y = #, because
the resulting temperature distribution then is
particularly accurate in this vicinity. This should
be quite relevant, particularly for the deriva-
tion of the rate of solidification, which strongly
depends on the internal energy per unit volume
stored near the interface and not so much on
the energy stored in more distant volume
elements. As a matter of fact, the Goodman
method, where the heat-conduction equation
is only averagely satisfied, produces less accurate
results than if the latter is satisfied by the above
expression merely in the vicinity of the phase
interface. Megerlin showed by comparison with
the Neumann example that application of the
Goodman method causes a maximum error
of 7'5 per cent, whereas application of the above
parabolic expression brings a maximum of
2-5 per cent.

If expression (25) is substituted into energy
equation (9) the latter is satisfied at the phase
interface if the functions defining the coefficients
are correlated by

fa = — 31E*(0* /o). (26)

With condition (12) at the cooling surface and
correlation (26) one onbtains

fi = Bi[1 - Bin
+ 46RO o2 — Bim)]. (27

To finally describe the growth £*(t) or n(t) of
the solid phase there remains the energy
balance (10) at the solid—fluid interface. By
introducing the coefficient functions f; and f,,
which are now available, into equation (10)
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one finds for the growth of the solid layer the
ordinary nonlinear differential equation

agx = — Bi/Ph

ot "1 — Bin + 1&*%3E*/otm(2 — Bin)
+ g (28)

Thus, for the plane wall problem (n = 0):

o&* — Bi/Ph

—_—= +q* (2

3¢ = 1= Bin +30e*ooma —Bip 4 @

For pipe flow (n = 1):

O e — Bi/Ph

dt *°  1— Bin +1%(8¢*/otm(2 — Bin)
+q**. (30)

A similar expression is obtained for the sphere
if n = 2 is substituted. The rates of solidification
in the plane -wall problem, in the cylindrical
and in the spherical problem thus appear
closely related. This correlation is defined by the
following rule:

To calculate, from the rate of solidification
(0£*/07) in the one-dimensional problem, the
corresponding rates in the cylinder or sphere
problem one must replace (6£*/0t) by (0£*/0t)E*"
and the heat flux parameter g* by ¢q*&*" with
n = 1 for the cylinder and n = 2 for the sphere.
The parameter 7, according to its definition,
equation (8), is formed differently for the plane
wall problem, the cylinder and the sphere.

This rule is also true if a linear function in
Y — 7 is assumed for the temperature distribu-
tion. It does not hold, however, if an expression
of third or higher degree is taken. For it follows
from equations (27) and (28) that in cases of a
parabolic distribution, the coefficient function
fi depends only on the parameter 7, not
however, on n. Only if f; = (09/0Y), is solely
a function of n does the above rule follow from
the energy balance equation (10) at the phase
interface. Then

(08/0X)s = (99/0Y),/E*" = f1(m)E*"
and the energy balance becomes

(@8 /or)i*" = — P—lh-fl(n) LI AT S €V
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from which the above rule becomes directly
apparent. If a polynomial of higher than second
degree is used for the temperature distribution
and is substituted in the energy equation (9),
a comparison of the coefficients of equal powers
of (Y — n) shows that f; no longer is a function
of  alone, but also of n. The simple rule above,
concerning the relation between the rate of
solidification in the one-dimensional problem
and that in the cylindrical and spherical
problem are thus only approximately rather
then rigorously true.¥

3.2.1. The rate of solidification and its limiting
values. The rate of solidification when solidifica-
tion commences (¢* = 1), calculated by equa-
tions (29) and (30) for the one-dimensional
problem and for pipe flow, is

8&*/ot = — Bi/Ph +q* (32)

or, introducing parameters with the original
dimensions:

psh dtjot = —kK(T, — T) +¢.  (32a)

Towards the end of solidification (£* — 0) in
pipe flow one has 9¢*/dt - —co. The rate of
solidification in a pipe increases rapidly at the
end of the solidification period because the
volume of the cylindrical layers becomes in-
creasingly smaller.

Solidification stops when 0&*/dt = 0. It
follows from equation (29) for the plane wall
problem that then

g* = Bi/[Ph(1 — Bin)] (33)
from which the thickness é = x, — & of the
solid layer is found to be
WL-T) 4

6= p v

(33a)

+ This is also true for the theorem derived by Lin [23]
which follows as a special case from the rule above when
q* = 0. Lin’s proof is based on the assumption that f;
(C, in Lin’s work) always is merely a function of the para-
meter 5. Lin comes to this supposition because, in comparing
the coefficients (at the top of p. 10 in his work [23]) he
apparently overlooked the fact that the factor (X/§)*
depends on (Y — n) and on powers of this parameter.
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and the heat flux

. s  1\7?

q=(T; T")<ls +k,> :
This result can be plausibly explained. It
represents the fact that solidification comes to a
stop when the flux of heat transferred by
convection at the phase interface exactly equals
that transferred to the coolant at the wall, and
thus no enthalpy of solidification is released.

If the rate of solidification for the plane wall
problem, according to equation (29), is plotted
over the thickness of the solid layer, the result
is a set of curves, as shown in Figs. 2 and 3,

(33b)
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FiG. 2. Rate of solidification of water with Pk = 5-401 in

the plane wall problem.

with the parameter g* which is assumed con-
stant in both diagrams. Figure 2 was plotted
for water with Ph = 5401, whereas Fig. 3
shows solidification rates for steel with Ph =
0-271. Positive values of 6&*/dt designate melt-
ing of solid, negative values designate solidifica-
tion of fluid. Both diagrams show that
solidification comes to a stop as the solid layer
grows thicker.
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Fi1G. 3. Rate of solidification of water with Ph = 5-401 in
the plane wall problem.

In pipe flow solidification ceases, as equation
(30) shows, when

£%(1 — Biln &%) = Bi/(Phg*). (34)

In order to discuss the roots of this expression
consider the curve Y(&*) = £*(1 — Biln &%)
The latter has a relative maximum at &* =
exp [(1/Bi) — 1] and Y = Biexp [(1/Bi) — 1].
The roots are the points of intersection of the
curves Y(£*) and the straight line ¥ = Bi/Phg*.
As Fig. 4 suggests, there exist, depending on
the magnitude of the Biot number and the
parameter Bi/Phg* = k'(T, — T,)/4, either none,
one or two roots. There is one root if Bi/Phg* <
1, there are two roots if Bi> 1 and 1 <
Bi/Phg* < Biexp [(1/Bi) — 1] and there exists
no root if Bi/Phq* > Biexp [(1/Bi) — 1].

It is surprising that apparently under certain
conditions solidification may come to a stop
at two different positions. Figs. 5-7 will serve
to explain this remarkable behaviour.

In these the rate of solidification 9¢*/dt is
plotted over the coordinate £*. Positive values

of 0&*/07 represent melting of the solid, negative
values represent solidification of the fluid

Y=€'(1-8i In€&H

Bi=10

Fic. 4. Points where solidification ceases in pipe flow.
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Fusion

Bi_ ., Bi

ﬁq.'lO’IOO

Solidification

ol 02 03 04 05 06 07 08 09 [0
e‘
Fi1G. 5. Rate of solidification of water with Ph = 5-401
in pipe flow. Bi = 1.

phase, as indicated by arrows along the curves.
Figure 5 was plotted for water with Ph = 5-401,
Figs. 6 and 7 for steel with Ph = 0-271. Those
curves for which Bi/Phg* < 1, have one root
which evidently signifies some unstable state.
On the left of the £*-axis intersection the arrows
along the curve indicate that a solid layer,
once it exists, will continue to grow. On the
right of such an intersection the solid layer
will melt away. If the pipe was initially free of
solid phase no liquid will solidify because, as
K(T, — T)/4 < 1, the heat flux coming from
the core of the flow is greater than or at least
equal to that removed through the wall of the
pipe.

If Bi < 1 whilst also Bi/Phq* > 1 then, as
Figs. 5 and 6 show, all liquid will solidify.
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FiG. 6. Rate of solidification of steel with Ph = 0-271 in
pipe flow. Bi = 1.

This is the case also if Bi > 1 and Bi/Phg* >
Biexp [(1/Bi) — 1]. The rate of solidification
passes through a stage of minimum speed.

If Bi > 1 whilst also

1 < Bi/Phg* < Biexp [(1/Bi) — 1]

the liquid in a pipe will begin to solidify. As
Fig. 7 suggests, the solid layer will stop grow-
ing at such a thickness which corresponds
to the first intersection of the £*-axis closest to
&* = 1. This position is stable (i.e. if the layer
should slightly grow or melt due to some dis-
turbance in heat flux, it will return to its original
thickness when the disturbance is gone). Should,
however, the solid layer have grown, for in-
stance by intense initial cooling, to the inter-
section point on the far left of Fig. 7, then
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either further solidification or melting can
occur, depending on whether the interface
layer is caused to grow or to melt by some
disturbance. Once melting begins it will not
stop until the stable intersection position on
the right is reached.

These considerations show that the behaviour
of the solid layer depends on its preceding
history. Thus, under equal conditions but with
different preceding history, either solidification
or melting can occur. Table 1 is a summary
of these varied behaviours solidification in
pipes can have.

3.2.2. Solidification time

The time for solidification is obtained by
integrating the equations for the rate of solidifi-
cation (29) and (30).

For the one-dimensional problem (n = 0)
and constant wall temperature (Bi - o0) it
follows from equation (29), if the characteristic
length x, is chosen so that ¢* = 1, that

o

_S (1 — &%) dex
T =

Xo — \/{Xg +2[1/Ph — (1 — EM]} (35)

Table 1. Solidification of flowing liquids in pipes

Characteristic parameters

Behaviour of the liquid
Bi Bi/Phq* = K(T, — T))/4
z1 <1 (a) No solidification if initially there existed
no solid layer
() Fusion if an initially existing layer was
&* > Ef[£t from equation (34)].
(c) Solidification if an initially existing layer was
&* < &% [£% from equation (34)].
<1 =1 . g
>1 > Bi exp [(1/Bi) — 1)] The liquid solidifies completely
=1 1 < Bi/Phq* < Biexp [(1/Bi) — 1)] (a) Solidification to a thickness ¢ if initially

there existed no solid layer. [£% is the root
closest to £&* = 1 in equation (34).]

(b) All liquid solidifies if an initially existing solid

(c)

layer was &* < &3. [£3 is the root closest to £* = 0
in equation (34).]

Fusion to a point £¥ if an initially existing solid
layer was &* > £3. [¢%! is the root closest to &* = 1,
&3 is the root closest to £* = 0 in equation (34).]
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with
Xo=1+41—-¢% and x,= phaJi

For the one-dimensional problem (n = 0)
and finite heat transfer at the wall the characteris-
tic length is chosen to make Bi = 1. Integration
of equation (29) yields

»
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4. ATTAINED ACCURACY AND COMPARISON
WITH RESULTS BY OTHER AUTHORS
A correct estimation of errors due to the
instationary solution with parabolic tempera-
ture distribution in the solid phase, which was
mainly applied here, has not succeeded as yet.
As Megerlin [8] found by comparison with the

(-3 —4¢%.dae

T=

X, — J{X? +2[1/Ph — ¢*2 — ] (1 - &5 (3 - &%)}

with X, =2 — &* +4g*1 — &%) (3 — ¢*) and

(36)

Xo= AJK'.

For pipe flow (n = 1) and constant wall temperature (Bi — c0) one obtains from equation (30)

£*(In &*)*. d&*

T § X; — VX3 + 2[1/Ph + & 1n £ (in &)

*

37
with X, = — In&* + $)g*&*(In &*)2 and x, = R.
For pipe flow (n = 1) with finite heat transfer at the wall integration of equation (30) yields
*In %2 — Biln £*). d&*
&* In &X( ilng*).d¢ (38)

T= —

X, — (X2 +2[Bi/Ph — ¢*¢*(1 — Biln %] (- In &*)(2 — Biln &%)}

with X; =1 — Biln &* — 1g*¢*In ¢%2 — Biln &*) and x, = R.

With the assumption of constant values of g*
and numerical integration by the Simpson rule,
the values listed in Table 2 were obtained for
two numerical examples. For comparison the
results obtained by the stationary solution are
also listed. When the phase-conversion para-
meter Ph is high, stationary and instationary
solution differ only slightly, as shown by the
example with Ph = 5401 for the freezing of
water. They differ considerably, however, if
the phase-conversion parameter is small, as
one can see in the example with Ph = 0-271
for the solidification of steel. Thus, for small
values of the phase-conversion parameter the
stationary solution is rather unsatisfactory.

Figures 8 and 9 show various solidification
curves. They show that if solidification comes
to a stop the solid-liquid interface approaches
this final position asymptotically.

Table 2. Solidification times, numerical results for the one-
dimensional problem (n = 0); ¢* = 0-1

Ph = 5401 Ph=0271
1 &*

T Tstationary T Tstationary
0-01 0-1184 0-1187 0-002850 0-002799
0-02 0-2396 0-2401  0-005824 0-005627
0-03 0-3637 0-3641  0-008916 0-008434 -
0-04 0-4908 04908 0-01212 0011369
0-05 0-6209 06204 0-01544 001428
0-06 0-7542 07529 0-01886 001723
0-07 0-8906 0-8383 002238 002020
0-08 1-0303 10267 002600 002320
0-09 1-1734 1-1683 002972 002623
01 1-3199 1-3130  0-03353  0-02929
0-2 29962 29568 007657 006145
03 51459 50421 012779 0-09651
0-4 79576 7-7462 0-18658  0-1345
0-5 117637  11-3817 0-25258  0-1754
06 172365 165797 032558 02192
07 261057 249638 040543  0-2660
0-8 462672 439395 049202 03158
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F1G. 8. Time for solidification in the plane wall problem.
Transient solution.

Neumann problem, the error, depending on the
magnitude of the phase-conversion parameter
Ph, will be less than 2-5 per cent. The one-
dimensional problem investigated in that work
included the Neumann problem, Bi — oo, as a
special case. This case has the strongest curva-
ture of the temperature profile. In the other
limiting case, Bi — 0, the solidification tem-
perature exists in the entire solid phase, ie.
the temperature profile is no longer curved.
One may assume, therefore, that with finite
values of the Biot number the parabolic approxi-
mation will cause errors lower than 25 per cent.
To verify this the process of solidification was
simulated by an analog electrical model. The
solid phase is subdivided into a finite number
of volume elements, each of which in the model
is represented by an electrical resistor and a
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FiG. 9. Time for solidification in pipe flow. Transient.

capacitor corresponding to its thermal re-
sistance and its heat capacity. At the solid-liquid
interface, analogous to the enthalpy of solidifica-
tion, a current is introduced at constant voltage.
Solidification of one volume element is com-
pleted when the product of current and time
has reached a certain value which is proportional
to the melting enthalpy of that volume element.
A circuit diagram for such an electrical model
is shown in Fig. 10. To simplify the problem
the heat flux at the phase interface was put
g = 0. By making the subdivisions sufficiently
small it is quite possible, as previous investiga-
tions showed [24] and also was verified by
comparison with the Neumann problem, to
reduce the error in the thickness of the solid
layer to below 1 per cent. According to Fig. 11
the differences between measurements on the
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model and the parabolic approximation lie
within the accuracy of the diagram. The error
in the thickness of the solid layer is therefore
certainly lower than 2-5 per cent. The one-
dimensional problem was recently investigated
by Beaubouef and Chapman [15] for the
assumption of constant wall temperature
(Bi — o0) and time-independent heat flux at
the liquid—solid interface. With the transforma-
tion ¢ = Y/(x, — &) Beaubouef and Chapman
rearranged the coupled differential equations (1)
and (2) and solved them numerically for certain
values of the phase-conversion parameter by
iteration with a modified fourth-order Runge—
Kutta procedure. Comparison of the results by
Beaubouef and Chapman and those by equa-
tions (22) and (35) renders excellent agreement,
as Fig. 12 shows. The results of the stationary
solution by equation (22) are slightly displaced
towards shorter times since the assumption of
a stationary temperature distribution is only
justified if the energy stored in the solid layer
is negligibly small. In reality there is always
some energy stored in the solid layer. The

103 5

T
F1G. 11. Comparison of analytical results with measurements
on the electrical model.
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FiG. 12. Comparison with results by Beaubouef and
Chapman [15],

solid layer, therefore, grows slower than the
stationary solution is apt to suggest.

5. SUMMARY

Solidification of fluids flowing past a cooled,
plane wall or through a pipe was analytically
investigated. The mean temperature of the
fluid was assumed higher than its melting
temperature, thus causing a flux of heat into
the solid phase. This heat flux will generally
vary with time and location. The thermal
resistance between the solid phase and the
surrounding coolant was permitted to have
any finite value, and consists of the thermal
resistance of the wall and the thermal resistance
between the wall and coolant. The problem
leads to nonlinear, coupled, partial differential
equations for which there is no exact solution.
A first approximation was obtained by assuming
a stationary temperature distribution in the
solid phase, a better approximation was ob-
tained with the assumption of a parabolic,
transient temperature distribution. The latter
satisfies all boundary conditions, but satisfies
the heat-conduction equation only at the solid-
liquid interface.

A comparison with measurements obtained
by electrical simulation and with numerical
results by other authors showed that the error
in the thickness of the solidified layer lies
clearly below 2-5 per cent

The process of solidification in pipe flow
shows several pecularities. If solidification comes
to a stop this critical point may represent a
stable or an unstable state, depending on the
magnitude of the parameters Bi and Bi/Phq* =
k'(T, — T)/4. A stable point is characterized
by the fact that, following a small disturbance,
for instance by a change of heat flux at the
phase interface, the solid layer returns to its
original thickness as soon as the disturbance
disappears. An unstable point is characterized
by the fact that, after the disturbance disappears,
the solid layer will continue to grow or to melt
according to the sign of the disturbance.
Whether the point that is reached is stable
or unstable depends on preceding occurances in
the solidification process. The solid layer thus
posesses something like a memory. These
phenomena occur also in solidification of
spherical shapes.
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Résumé—La solidification de fluides s’écoulant le long d’une paroi plane ou i travers un tuyau est calculée
en supposant un transport de chaleur fini vers I’ambiance et un flux de chaleur imposé ou connu vers

I’interface solide-liquide.

Une trés bonne approximation est obtenue si I’on suppose que la distribution de température dans
la phase solide est parabolique, ce qui satisfait toutes les conditions aux limites et n’est en accord avec
I’équation de I’énergie qu’aux interfaces solide-liquide. Une comparaison avec des mesures sur un modéle
électrique analogique et avec d’autres résultats numériques montre que I’erreur est inférieure 4 2,5%.

Dans I’écoulement en conduite, 1a croissance de la couche solide, pour certaines valeurs du transport de
chaleur ambiant, et du flux de chaleur & I'interface fluide-solide, peut s’arréter pour deux points critiques,
dont 'une désigne des conditions stables et I’autre un étét instable. Selon I’histoire de la phase solide, on

atteint un point stable ou instable.

Zusammenfassung—Die Verfestigung von Fliissigkeiten, die entlang einer ebenen Wand oder in einem
Rohr strémen, wird unter der Annahme berechnet, dass der Wirmeiibergang an die Umgebung endlich
ist und ein aufgezwungener oder bekannter Wirmefluss an der Kontaktfliche von Fliissigkeit und Feststoff

vorliegt.

Eine sehr gute Niherung erhilt man, wenn in der festen Phase eine parabolische Temperaturverteilung
angenommen wird, die allen Randbedingungen geniigt und mit der Energiegleichung nur an der fest-
fliissig-Kontaktfliche iibereinstimmt. Ein Vergleich mit Messungen an einem elektrischen Analogie-
modell und mit anderen numerischen Ergebnissen zeigt, dass die Abweichung unter 2,5 Prozent liegt.

Bei der Roherstrdmung kann das Anwachsen der festen Schicht fiir bestimmte Werte des Warmeiiber-
gangs an die Umgebung und des Wirmestroms an der fliissig-festen Kontaktfliche an zwei kritischen
Punkten zum Stillstand kommen, wobei der eine stabile Verhiltnisse, der andere einen instabilen Zustand
bezeichnet. Es hiingt von der Vorgeschichte der festen Phase ab, ob ein stabiler oder instabiler Punkt

erhalten wird.
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AHHOTamUMA—Pacyer mponecca 3aTBEPAEBAHMA MUIKOCTEH, ABMMKYIUMXCH BAOJNDL IIOCKOH
CTEeHKM MJIM TeKYIIMX B TpyOe, IpefiaraeTcA IMPOBOJUTH B JOMYLIEHMHM HAJIUYUA KOHEYHOTO
MePeHOCca Tellla B OKPYMKAWUIYI0 Cpelly W 33JaHHOTO TEIIJIOBOIO IIOTOKA K IIOBEPXHOCTH
paspesia TBepHoe TeJ0-HUAKOCTh, Xopollee MpubInKeHne HOJTy4aeTcA AJA NapaboanuecKoro
pacrpefiesieHMA TeMIIepaTyp B TBepaol dase, YTO YAOBIETBOPHET BCeM T'PAHUYHEIM YCIOBHAM
U COOTBETCTBYET YPABHEHMIO SHEPrMM TOJBKO HA HOBEPXHOCTAX pasfea TBepAode Tejo-
HUAKOCTE., CPaBHEHHE STOI'0 pacuéTa ¢ JAHHBIMM, IOJYYEHHBHIMM C IIOMOIILI0O AHAJIOTOBON
BJIEKTPUYECKOM MOofe/, U ¢ IAPYTHMHU YMCIEHHHIMHM Pe3yJbTaTaMu O0OHAPYKUBAET HOTpel-
HOCTb MeHbiuyo 2,5 9. Jlna Teyenusn B TpyOe HapacTaHUe TBEPAOTO CIOH IPU ONpeReTeHHHX
WHTEHCHBHOCTAX Tennoo6MeHa ¢ OKpysalollelf Cpefoif ¥ MJIOTHOCTH HOTOKA TemJa HA HO-
BEPXHOCTH Pasfesa MUIKOCTb-TBED/0E TEJI0 MOMET IPUBOIUTE K OCTAHOBKE B IBYX CIyYadx,
OJfMH M3 KOTOPBIX 03HAYAET CTALMOHAPHBIN DEMM, & JPYroi-HeCTAMOHAPHBIN, YTO 3aBUCUT
OT BCETO NPeAByIIero mpoiecca.



